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Abstract 
The scheme of quantisation of non-local field theory is formulated. 

An intermediate regutarisation is introduced into the non-local Lagrangian of the 
classical scalar field in such a way that the procedure of the canonical quantisation leads 
to the appearance of additional ghost states with indefinite metrics. The ghost states 
disappear when the regularisation is removed but the propagator of the scalar particle 
becomes nonqocal and the S-matrix is finite, unitary, causal and covariant in each 
perturbation order. 

1. Introduction 
The self-consistent non-local quantum field theory was formulated by 

Efimov (1968, 1970) in the framework of the Bogotubov, Mevedev & 
Polivanov (1958) and Bogolubov & Shirkov (1969) axiomatics. 

The outline of the construction of the S-matrix in the non-local theory 
consisted of the following. The general axioms were formulated, then a 
certain non-local Lagrangian of the classical field was considered. For example, 
in the case of the one-component scalar field ~0(x) the Lagrangian of this kind 
can be 

SP(x)=½¢(x)(O-m:)~(x)-g {f dyK(x-y)¢(y)} 'l (1.1) 

where K(x - y )  is a non-local form factor. In order to construct the S-matrix 
in perturbation theory we used the correspondence principle which states that 
for infinitesimal g the S-matrix has the form 

where ~(x) is the quantised scalar field which satisfies 

([]- mZ)~o(x) = 0 (1.3) 
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In constructing the highest perturbation orders we then introduced a reaction, 
according to which the propagator of the scalar particle changes into the 
following: 

1 [ ~ ( k ) ]  ~ 
(1.4) 

m 2 - k  2 - i e  m 2 - k  2 - i e  

We also indicated the class of functions to which the form factor [K(k)] 2 
belongs and introduced an intermediate regularisation in the framework of 
which the finite S-matrix was constructed. After the regularisation had been 
removed we proved that the S-matrix satisfies all general axioms: unitarity, 
causality, covariance, gauge invariance and so on. 

In this sense our scheme is purely constructive because it gives some 
prescriptions within the bounds of which it is possible to construct a finite 
S-matrix satisfying all initial axioms. However, the suggested scheme is not 
connected with any canonical quantisation of non-local classical fields of the 
type (1.1). 

In the present paper we propose a procedure of canonical quantisation of 
non-local fields which are described by the Lagrangian of the type (1.1). Our 
idea is as follows: We introduce a certain regularisation into the classical 
Lagrangian in such a way which permits us to carry out the usual canonical 
quantisation. This quantisation leads to the appearance of additional ghost 
states with indefinite metrics. The ghost states disappear when the regularisa- 
tion is removed, but a trace remains, namely the propagator of the scalar 
particle becomes non-local according to (I .4). 

Distant analogy of the procedure proposed is the method of quantisation 
of the electromagnetic field (see, for example, Bogolubov & Shirkov (1969). 
The real physical photon can be in two states with transverse polarisations 
only. However, these states cannot lead to the correct propagator of the 
photon. In order to get the propagator of the virtual photon in the form 

~ (1.5) D~v(k2) = - k  ~ -- ie 

it is necessary to introduce non-physical scalar and longitudinal quanta with 
indefinite metrics into consideration. The Lorentz condition 

0gA(~ -) (x) I any physical state ) = 0 

and the current conservation O~zJu(x) = 0 guarantee that the scalar and 
longitudinal quanta do not appear in any interactions of physical transverse 
photons with electrons. However, their role is that they contribute to the 
propagator (1.5), i.e. the virtual photon consists of transverse, longitudinal 
and scalar quanta. 

2. Formulation o f  the Quantisation Problem 

Let us consider a one-component scalar field ~(x). The Lagrangian density 
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describing the classical field ~(x) can be written in the form 

~LP(x) = ½9(x)(D- m2)~(x) + gU(K (12[])~o(x)) (2.1) 

Here [] = -(32/aXo 2) + (02/~x 2), l is a given parameter having the dimension 
of length, g is the coupling constant, U(w) is a function describing self- 
interaction of the scalar field ~(x). We suppose that U(w) is analytical in the 
neighbourhood of the real axis in the complex w = u + iv-plane. In all other 
respects it is an arbitrary function. The classes of functions U(w) for which 
the finite non-local S-matrix can be constructed are considered in detail in 
Alebastrov & Efimov (1972, 1973). 

The operator K(12E])in (2.1) is non-local and can be presented in the form 

K(lZE] )= ~ C. n=v (2~'T (12if])" (2.2) 

In what follows, for convenience we consider the operators 

V(12M) = [K(/ZD)] z (2.3) 

and suppose that the function V(z) satisfies the following conditions~ 

(1) V(z) is an entire function of the finite order ½ < p < 1, i.e. 3 C > 0, 
b > 0  

I V(z)l <Cexp (blzlP), 
(2) [V(z)]* = V(z*), 
(3) v(m l = 1, 

(4) V(x) ) 0 for real x, 

(5) V(z)= {O ( ] z r ) '  R e z - + - ~  

O(exp {bizin}), Re z -+ +~, 

In the expansion 

(6) V ( z )  = v n [ z  - m212] n 

n=0  

the coefficients v n satisfy 

(7) Vo = 1, Vn>0, Vn, 

(8) 3 C > 0 ,  A > 0  that 

A" 

Thus we have described all the quantities in the Lagrangian density (2.1). 
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The wave equation for the classical scalar field ~o(x) can be obtained accord- 
ing to the principle of  stationary action and may be represented in the form 

(0  - m 2) ~o(x) = - g K  (I 2 E]) U'(K (l 2 E])~p (x)) (2.4) 

Let us introduce the field 

~(x) = K(l ~ El)~(x) (2.5) 

Then the total Lagrangian (2. t )  for the field O(x) is 

Ga (x) = ½(~(x)E(E3) ¢(x) + gU((9(x)) (2.6) 

where 

[ ]  - - m  2 

E(E]) = V(12[5 ) (2.7) 

Formally the wave equation is written as 

E( D )O(x ) = -gU '  ( ¢(x )) (2.8) 

for the interacting field, and 

[] - m 2 
E(g])¢(x) = V(12E] ) ¢(x) = 0 (2.9) 

for the free field. 
The problem is how to understand these equations, how to investigate and 

solve them and how to perform the quantisation of  the field O(x). 
We proceed in the following way. Instead of  equations (2.8) or (2.9) we 

consider a regularised equation 

L ' s ( :q)~(x)  = - g U ' ( ~ ( x ) )  (2.1 O) 

or, in the case g = 0, 

u ~ ( [ ] ) ¢ 8 ( x )  = 0 

Here 6 is a parameter of  the regularisation such that 

lira Es(D)  = E([3) - [] - mz 
~-,o V(12[]) 

Accordingly, instead of  the Lagrangian (2.6) we obtain 

~e~(x) = ½~(x)E~(D)¢8(x) + gU@%~)) 
Our regularisation is chosen in such a way that the function 

k 2 _ m 2 

(2.11) 

(2.12) 
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has zeros in some set of points 

00 

E~(k 2) ~ (k  2 - m2)  I - I  (k2 - m 7 ( 6 ) )  
j=l 

We suppose that 

and 

m12(5) > 0 (j = 1, 2, 3 . . . .  ) 
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(2.13) 

mp(6) -+ 

when 5 -~ 0. 
Then the field ~6(x) (6 > 0) can be quantised by the methods with indefinite 

metrics (see papers of  Blokhintsev (1947), Pals & Uhlenbeck (1950) and Nagy 
(t966)). 

The Hamiltonian Ho ~ and the vector space of states ~ 8  with indefinite 
metrics can be constructed for the free system when 8 2> 0. Further the S ~- 
matrix can be found for the interacting system. 

By definition, we consider that when 6 ~ 0 the limits of all physical quanti- 
ties (S-matrix, current operator J(x )  = i(SS/Sq~)S +, Green function G(Xl . . . . .  xn)  
and so on) are the quantum field solution of the initial system (2.6). 

The problem is to indicate such a regularisation procedure which provides 
the existence of the fimits of all operators and matrix elements for any physi- 
cal quantities at 6 -+ 0. It means that we have to obtain a self-consistent theory 
in the limit 8 -+ 0. This paper is devoted to this problem. 

3. Regularisation Procedure 

The regularisation is introduced in the following way. Instead of the func- 
tion 

V(k2/2) = ~ vnl2n(k 2 - m2)  n (3.1) 
n = O  

we introduce the regularised function 

VS(kZl 2) = vnl2n( k2 - m2)  n 
n + 2 /  6 k 2 - m 2 ' ~  

It is convenient to denote 

k 2 
z = - -  X = m212 

m 2~ 

(3.2) 

(3.3) 
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Then 

VnXn(z_ 1) n ) 
v%x)  = "~+~- 7- - g -  - -  

=o ! I / 1 - -7 (z  - 1) 

L - f \  1 
Let us consider the function 

(3.4) 

k 2 - - /~z  2 Z - -  l 
=/7"/2 

~(k~) = V~(k~l ~) V%X) (3.5) 

The following representation is valid 

1 1 V~(zX) 
ES(k 2) m 2 z -  1 

Here 

_ _  = 1 ( . ) J A ?  

m2]= o z -# i  
(3.6) 

p] = 1 + L. (] = o, 1, 2 , . . . )  ( 3 . 7 )  
b 

.=ma×(od-:} !(n + 2 - ] ) [  

(_)1A] pjs = 0 for s = 0, 1 (3.9) 
]=o 

The numbers A/8 can be represented in the form 

A [ = ~  V+I V (1+~) x 

It is easy to obtain the following estimate 

A[<~min(l+N)2v ( I + N )  ~ < C m i n ~ e x p  b ( I + N )  X 
N N j N 

~const.[B(5)]lexp[_(~-~-~-)]log]] ( j -+ ~ , ) (3 .10 )  

The function Da(k 2) = [ES(k~)] -1 has the properties: 

( i)  It is a meromorphic analytical function in the complex k2-plane and 
has the simple poles at the points 

m]2(5)=m2pj=m2 [1+]~ ( ] = 0 , 1 , 2  . . . .  ) 
\ o ]  
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(2) The residues of D~(k z) at these points are 

Res D6(k:)=(-)IA[ 
k:=mp(6) 

(3) When I k 2 ] -+ oo in all k2-plane, except the ray [rn 2, oo). 

Da(k z) = kz _ m2 =0  

(4) The function D~(k 2) may have zeros at the points ap (p = 1, 2, 3 . . . .  ) 
V(k2l z) 

(5) lim~__,o D~(k2) - k 2 - m 2 

4. Quantisation o f  the Regularised Equation 

Let us consider the classical system described by the Lagrangian density: 

£f~ (x) = ½05 (x)E ~ ([])4fi (x) + gU(dp ~ (x)) (4.1) 

where the regularised operator E~(V1) satisfies the properties enumerated 
above. 

According to the principle of stationary action, the wave equation for the 
system described by (4.1) has the form 

E 8 (r~)q~6(x) = -gU'(O 8 (x)) (4.2) 

It is the differential equation of the infinite order, i.e. it is an integral equation. 
In order to solve the Cauchy problem we have to know the values of the func- 
tion qiS(x) and all its derivatives in the initial moment of time. 

We analyse the solving Of this equation following the scheme proposed by 
Pals and Uhlenbeck (1950). Let us introduce a system of fields 

E~(D) , 8 , ,  #(:0 = , , / ( A [ )  n - -  9 tx) (4.3) 

where 

m/2(8)=m2 (1+ J )  ( j = 0 , 1 , 2  . . . .  ) (4.4) 
\ / 

According to definition (4.3), the fields @(x) are not independent for different 
] and they satisfy the correlations 

x/(A:) [] _ m/2(6) ~i~(x) = x/(Ai ~) [] _ mi2(8) (P/6 (x) (4.5) 

The field ~bs(x) can be expressed as 

~ (x )  = ~ (-)1 ~/(Al~p(x)  (4.6) 
/=o 
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In fact, on the one hand, the following chain of equalities 

S=o [] - ms~(6) 

= 2 (-)SA? Es(I-1)~(x)= ~ E6(U:]~(x)= ~ ( x )  
/=o [] - ms2(5) 

is valid. On the otnerlaand, using (4.5) it is possible to obtain 

~(m) 
d ( . ) :  

i=O 
E~(VI) ~ l "JA ~ 

i=0 
: +?(x) 

On the basis of the correlations (4.3), (4.5) and (4.6) the Lagrangian density 
can be expressed in terms of the fields q$p(x); 

,z ,~(x)  = ~ ~ ( - ) s ~ / ( x ) ( m  - ~?(~))¢?(x) 
]=0 

+ gU (_)s ) ) (4.7) 
i 

Equation (4.2) can be written in the form of the infinite system of equations 

) (ffl - m12(6)~[ (x)= -gx/(A?)U' ~/(As~)Os~(X) 

(i =0, 1, 2 , . . . )  (4.8) 

In fact substituting (4.6) into (4.2) and making use of (4.5) it is possible to 
obtain 

]=0 

= k ( ~ ) ) V ( & )  [] E-~-~k~(5 ) ¢/(.,<) 

- ~l(Ak6) i~=o[:]-mi2(6)E*(m)cP~(x) 

- :d(Z-~-j~) ~ % ) = - g v '  =o(-)~4(A?)~?(x) 
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From here it foltows (4.8). 
Thus the Lagrangian (4.7) and the system of (4.8) are completely equivalent 

to the Lagrangian (4.1) and equation (4.2). 
Proving this equivalence we have considered that the fields ¢i~(x) are not 

independent because they are defined by the correlation (4.3). However the 
representation of the Lagrangian in the form (4.7) and the wave equation in 
the system (4.8) allows us to consider these fields, ~@(x), as being completely 
independent. 

This method is welt known in the theory of differential equations. It is used 
usually when a differential equation of the highest order is replaced by a system 
of differential equations of the first order. 

Starting from the Lagrangian (4.7) which describes the system of the inde- 
pendent fields {~/~} and leads to the system of equations (4.8) it is easy to 
show that the field 

(-)J,I(Aj%?O:) 
/'=0 

satisfies equation (4.2), and correlation (4.5) is valid. 
Thus we can consider that our initial system (4.1) is described by the 

Lagrangian (4.7) where the fields are independent and satisfy the wave equa- 
tions (4.8). 

All the above-stated arguments concerned the classical field theory. The 
quantisation of the system of the classical fields {@(x)} can be performed 
according to the canonical procedure of quantisation (see, for example, 
Wentzel (1943)). Let us introduce a momentum field, conjugate to ~]a (x, 0) 

nf(x, o) = ~@(x, o) dy~ea (v, o) = (-)*@(x, o) (4.9) 

We treat @ and FI] a as operators with the commutation relations: 

(x, o), @ (x', 0)1_ = Inp(x, 0), 0)1_ = o 
[~p (x, 0), ilfi (x', 0)l_ = i6# ,a(x  - x') (4.t0) 

or 

[q~j6 (x, 0), ~}fi (x', 0)1_ = i ( - ) J s f i , 8 ( x  - x ' )  (4.11) 

It is seen that the indefinite metrics is to be employed to quantise our sys- 
tem in a regular manner (see Nagy (1966)). 

As we are unable to solve the system of equations (4.8) exactly, our pro- 
blem is to construct the perturbation series for the S-matrix and we perform 
the quantisation of the non-interacting system of fields {@(x)}. Instead of 
(4.8) we have 

(E] - r n j 2 ( 6 ) ) ~ ( x )  = 0 (j = O, 1, 2 . . . .  ) (4.12) 
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The solution of  these equations can be written in the form 

X/(2C@k) (d]k e-ikx + d;ke ikx) (4.13) 

COik- x / [ k  2 + rnj2(b)] [k 2 + m 2 1 + 

The commutat ion relations (4.1 O) and (4.11) leads to the operators djk and 
djk to satisfy 

[aik, ai 'k ' l-  = I d a ,  a&,]_ = o 
(4 . t4 )  

[ajk, aj+,k,]_ = ( - )JSj j ,8(k  - k ' )  

The Hamiltonian of the non-interacting system can easily be obtained 

. o  , + = dkCe]kaikajk (4.15) 
j=o 

The system under consideration consists of  quanta with the following mass 
spectra 

t m 2, ] = 0 (4.16) 
m]2(8) = ( ~ )  

~ m 2 1+  , ]=I ,  2,3 . . . .  

Let us denote 

d o k = a k ,  d~k=ak (4.17) 

When fi -~ 0, the masses of  quanta wi th]  = I, 2, 3 . . . .  go to infinity, accord- 
ing to (4.16). These quanta are called ghost states or ghosts. The quanta with 
j = 0 have the finite mass rn. We call them normal particles or scalar particles 
with mass m. 

The space of  stateso~f ~ is a vector space with indefinite metrics. It consists 
of  

(1) a vacuum state 10), that is unique, defined by the conditions 

a jk lo>  = o 

and normatised by <010) = 1; 

(2) one-particle states IL k) = dT~10) which are normalised by 

q, k 1]', k ' )= ( - / ~ H , ~ ( k -  k') 

and are eigenstates of  the Hamiltonian Ho 8 

Ho ~ lY, k> = @kl], k>; 
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(3) many-particle states. I f  there are n particles with momenta  kl . . . . .  kn 
and among them there are vl, v2 . . . .  , pa (n = th + v2 +" • • + p~) identi- 
cal particles, i.e. with the same index j, then the following is given: 

d /~ k~ . . . . di+  n 
In) = I]~, k l ; . . . ; I n ,  kn) = X/(v~! . va!) I0) 

These states are also eigenstates of  HoB: 

All these states generate a complete system of  eigenstates in the vector 
space ~ a ,  i.e. 

®aNI0><01+ (_)z,+'..+zn f f dknlnXnl:l 
n=l ]l...jn=o 

What does happen with the space~¢ '~ when 8 -+ 07 At 8 ~ 0 the masses of  
all ghosts increase according to (4.16). Therefore if any physical state is char- 
acterised by a definite value of  energy then in the limit 5 ~ 0 no physical 
states with arbitrary but finite energy can consist of  ghost quanta. In this sense 
we have 

lira ~ = ~,~ (4.18) 
8~O 

where ~ i s  the Hilbert space which contains 

( I )  a vacuum state 10>, akl0) = 0, 

(2) single- and many-particle states 

1 + + 

in) = Ikl . . . .  , kn) = ~ . v ) a k . . .  al~nl0) 

All these states generate the complete system in ~ :  

@ ~ f  [O)(O]+n~=l f d k l . . ,  f dknJk , . . . . .  kn)(kl  . . . . .  k n t = l  

5. Green Functions o f  the Field ~a(x) 

First of  all, let us consider the commutator  

A~(x - y )  = [q~(x), ~a(y)]_ (5.1) 

Substituting the representation (4.8) into (5.1) and using (4.9) and (4.13) we 
obtain 

A~(x) = ~ ( - ) J A [ / , ? ( x )  (5.2) 
j=O 
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1 f d4ke(ko)6(k2 _ e_ik x 

1 4~(~ O(x~)]~(mj(8)~/(x~)) (5.3) = ~ ~ ( x o ) ~ ( x ~ )  - 

Because the series (5.2) converges absolutely we have 

A~(x) = 0 when x 2 < 0 (5.4) 

Thus the operator ~ ( x )  satisfies the local commutation relations. 
Now let us introduce A~_+)(x) functions according to 

A~_)(x - y )  = A~+)Cv - x )  = (01¢~(x)~0 , )10)  (5.5) 

We have 

where 

A~_)(x) = ~ (-)]A?A~(_)(x) (5.6) 
j=O 

1 f d4kO(ko)6(k2 e_ik x @(_)(x) = ~ - m]2(8)) (5.7) 

For x 2 -+ O, according to Bogolubov & Shirkov (1969), one can get 

i t 
A ~ _ ) ( x )  = - ~ ~ ( x o ) ~ ( x  2) - 4 ~ x  2 

log mi2(8)[x2[ + imi~(6 ) e(xo)O(x 2) + O(x 2 logx  2) 
+ 167r 2 4 167r 

Substituting this expansion into (5.6) we get 

8 _ 1 ~  
A(_) (x ) -  16n2 Z (-)lA~mfl(8) log mj2(8) + O(x 2 togx  2) 

]=o 

Here we have used the correlations (3.9). Hence it appears that the function 
A~_)(x) is finite at x = 0 and 

m s 

A~_)(0) - 16~ 2 2 (--)JAfPi log pj < ¢¢ (5.8) 
]=o 

It means that the operator ¢~(x) is well-defined because of  

(01 ¢~(x)¢ ~ (x)[ 0> = a~_)(0) < ~ (5.9) 
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Let us consider the causal Green function 
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a d ( x  - y): <olr(,%)#(y))lo> = i (-)9pa~(x - y) (5.1o) 
]:0 

where 

Otherwise 

_ t f dk e -ikx 
A }c(X ) 

(27r)4i J mjS(6) -- k s - ie 

1 f dkT~c~(kS) e_ik x Ac~(x) - (2~-)4i (5.11) 

where 

m7(5 ) - k s - ie 

1 ,~,  vnl2n(k 2 - m2) n 
-mS_ s_io ._,:o (5.12) 

The function A f ( k  s) is analytic in the complex kS-plane for Im k s ~> O and 

when k s -~ o o  for Im k s ~> 0. 
The retarded and advanced Green functions can be defined in the following 

way 

Ar~et(x) : O(xo)A6(x) = Ac~(X) + A~+)(x) (5.13) 

a ~ ( x )  = -O(-xo)a~(x) = a d ( x )  - a~_)(x) 

They satisfy the conditions 

x < 0 
a~o~(X) : 0 for 

x s > O, Xo < 0 
(5.14) 

x s < 0 
S[d4X) = 0 for 

x 2 > 0 ,  X o > 0  

Thus we can see that all Green functions satisfy all requirements of  the local 
quantum field theory. It means that the field %~(x) is local. 
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The following correlations are valid for the Green functions Ac~(X) and 
a~_4x): 

Ad(x)  = O(x°)As(-)(x) + O(--x°)A~(+)(x) (5.15) 

a~_~(x) = O(xo)Ad(x) + 0(-~o)a~*(~) 
An additional correlation should be mentioned because it is important when 

proving the unitarity of  the S-matrix regularised: 

tot(  0 )to) T ~ 8 ( X ) ~ y ~ ( y )  = ax,Oy--~(OITO~(x~O,))tO) (5.16) 

In other words, the T-product in the Wick sense coincides with the T-product 
in the Dyson sense, i.e. symbolically 

Tw = TD (5.17) 

it is easy to obtain for the fields ~ ( x )  Indeed, 

02 
(ol TOf (x)~j,~ (v))I 0) 

ax ~ y  ~ 

= Z ~?(x) ~ ~fi (y) + i(-)]6jf6~zoSvo~(4)(x - y) 

Therefore 

o('~ ~ (-)JA? o = i8~o8voo ( x - y )  = 
j=O 

according to (3,9). Thus the following correlations take place 

a . a / , d ( x )  = O(xo)a.a/,~_)(x) + o(-xo)a.a~A~+)(x) (5.1s) 
a.Ga~_)(x) = O(xo)a.a~,a~(x) + 0(-Xo)a.Ga~*(x) 

6. The Green Functions in the Limit 6 -+ 0 

The Green functions in the limit 6 -+ 0 are distributions which are defined 
on a space of test functions Za. Therefore we have to consider improper transi- 
tions to the limit, i.e. investigate the limits 

6-~0 

where G~(x) is a Green function and f (x)  EZa. 
Let us define our space of test functions Z a. We say that f ( x  t,.  •., Xn) E Za 
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if 

(1) f(z 1 . . . . .  Z n) is an en'ire analytical function of  n complex variables 
zv = x~, + iyv (v = 1, 2 . . . .  , n) for which there exist such C >  0 and 
A ,  > 0 (u= 1 , . . . , n )  that 

(2) for anyy~ (t, = 1, 2 . . . . .  n) 

f clxl,.. ; dxnlf(Xl + i f l l  . . . . .  x n  -[ iYn)[ < oo 
- o o  - o o  

The number a is chosen depending on the interaction Lagrangian under con- 
sideration and the order of  the form factor K(k212). It is necessary to choose 

2p a 
1 < a < - -  or p < - -  (6.2) 

2 p -  1 2 ( ~ -  1) 

The space Za, which is the space of  Fourier transformations of  functions 
f E  Za, consists of  differentiable functions jT(p i . . . . .  Pn) satisfying the condition 

(3) there exist positive numbers C > 0 and Bu > 0 (u = 1 . . . . .  n) that 

. . . . .  pn){ <~ C exp l -  ~ Bvlpv,'Yl (6.3) If(pl 
~ J P=t 

where 

7 = - -  and p 
a - 1  2 

First of  all, let us consider the commutator A~(x). We have 

limo f dxAS(x)f(x) = lim ~ dkA6(k).f(k) 
6->o 

where 

= f dk 2 • Q~ 
~(Xo)~(x - m~)Y(k) + ~ o  (6.4) 

Qs = f dk ~ /(~)/21 ( - ) /A/  ~(~o)6 (k s - m?(~ )) 

.ffdk~o~ = ~ (-yAp - ( ~ ? ( k o ,  k)~(ko)~(k ~ - m?(~)) 
]=1 
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The following estimation can be obtained 

[" g dkdko ~ 
I? = J )  ~ f(ko, k)e(ko)6(kZ - m?(o)) 1 

<<.t__2_ 
(2,)3 f 

~< const. --g- exp (-B[(co~k) ~ + [k[ ~'] } 
co/k 

Making use of the inequality 

(co~k) ~ + Iki~' = (x/(k 2 + m/2(~))) "r + Ik['r >~hl(m](~)) "r + h21kl ~' 

where hi = 2 (~'/2)- 1, h2 = 1 + 2 (~'/2)- 1, now Q~ is evaluated to be 

IQ~[ ~< ~. A[ Ip  ~< const. ~ Ap exp (-Bhx(mj(8)) ~) f dk exp (-Bh: lkl  ~) 
j=l j=l x/[mj2(8) + k 2] 

(1 5 ( [ ,,]]° (m / ~ + ~ ) 3 , }  
~<const. +~ N)z exp b (1 +N)~- - - g h  1 

N j 1 
/=1 

Because ofp  < 3'/2, we have 

~ ( I  ~<6. const. 
+ N )  2 

I Q~[ ~< 6 . const. N[ J 
j=l 

and finally 

lira IQ~[ = 0 
6--,0 

Thus in the limit 6 -+ 0 the commutator A~(x) changes into the commutator of 
the scalar field ¢(x) 

lira 2x6(x) = A(x) = t f 8-~o ~ dlceqc°)~(k~ - m~) e-~k~ (6.5) 

In the same manner it is easy to show that in the improper sense 

lim AS(+)(x) = A(+)(x) = (@~)a f dkO(~ko)6(k2 - m2) e -iicx (6.6) 
6 - - * 0  - 

The existence of these limits means that there exists a weak limit 

tim O~(x) = ~p(x) (6.7) 
6--~0 

where ~o(x) is the scalar field of mass m satisfying the free wave equation 

(IS] - m2)~p(x) = 0 
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Consequently, all ghost states disappear in the limit 6 -+ 0. This result con- 
firms the statement that 

lim j/z~ = 
6 ~ o  

which was accomplished in Section 4. 
Consider now the causal function AcS(X). We have 

f d k  ~ ~  ~ 

5~0 5"-+0 

= lim - k 2 - ie 5--,0 (27r)4i m e 

1 ( d k V ( _ k 2 l ~ ) j ( k )  

(27r)4i J m 2 - k 2 - ie 

vnl2n(k2 - m 2 )  n 

n+2 [ ~ k 2 - m z - ie 
n=O H ~1-- - 

]=1 

This integral converges because the estimation 

I V(k212) f (k ) l  <~ Cexp  {bl2Plko 2 - -  k21 p -B[ lko[  "~ + [k[~]} 

is valid, and p < 7/2. 
Thus the causal function AcS(x) changes in the limit 5 ~ 0 into a non-local 

propagator 

V(k2lZ) = D c ( k :  ) (6.8) 
tim AcS(k )  = m :  - k 2 - ie 5~o 

The function [ )e (k  2) has a single pole at k 2 = m 2. This pole corresponds to the 
scalar particle with mass m. The poles corresponding to all ghost states have 
disappeared. The form factor V(k212) is an entire function and it does not 
correspond to any real state. This form factor describes a non-local character 
of  the interaction o f  our scalar particles. 

Thus in the limit 6 -+ 0 our theory becomes non-local. 
Consequently, the non-local character of  the interaction of  the classical 

field (2.1) is revealed in quantum field theory as a residual effect o f  non- 
physical ghost states when these ghosts are removed by the transition to the 
limit ~ -+ O. 

7. Unitari ty  o f  the  S-Matr ix  

The interacting system is described by the Lagrangian density (4.7). The 
total Hamiltonian of  this system has the form 

//~ =Ho 5 +H/5 (7.1) 



36 G.V. EFIMOV 

Here Ho ~ is given by (4.15) and 

H I  = - g  f dx:  U ( ~ ( x ,  0)): (7 .2)  

where q~8(x, 0) is defined by (4.6). 
Let us find the S-matrix corresponding to the interaction Hamiltonian (7.2). 

According to the standard procedure, a counter-term should be introduced to 
provide the construction of the finite S-matrix on the mass shell. These counter- 
terms are responsible for the renormalisation of the vacuum energy, the mass 
and the wave function of our scalar particle. In order to take into account 
correctly the contributions of the interaction Han~ltonian and the counter- 
terms it is necessary to introduce an operation of 'switching on' and 'switching 
off '  the interaction. Thus the regularised S-matrix can be written in the form 

SS'L=Texp{ifdx[g(L):U((~(x)): 

Here 

5m2(g(x)) = ~ 5m~n)[g(x)] n 
;a=2 

Z2(g(x)) = ~ Z2(n)[g(x)] n (7.4) 
n = 2  

E(g(x))= ~ Ecn)[g(x)]" 
n = 2  

The counter-terms 6m2(g) and Z2(g) are responsible for the renormalisation of 
the mass operator of scalar particle Z(p2), so that in the limits 5 -+ 0 and 
L - + ~  

~ ( p ~ )  = ~(p~)  - ~m 2 _ Z2(p ~ - m ~) 

and 

X,(m 2) = X~(m 2) = 0 

in each perturbation order. The counter-term E(g) is responsible for removing 
the amplitude of the vacuum-vacuum transition. 

The large parameter L defines the intensity of switching on the interaction. 
The function g(x) satisfies the conditions 

(1) 0 <~g(x) <~g 
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(2) g(0) = g 

(3) OSg(x)lx=O = 0 for S = 1, 2, 3, 4 

where ~s = 0 u . . .  0u s 

(4) f g(x)dx < oo 

(s) g(x) EZa 
Our problem is to investigate the perturbat ion series for the SS'L-matrix 

__~ 1 fM. "f (L)'" "g(~) S 8'L = 1 + E  dx1 dxng S ~ ( x 1 , . . . , x / t  ) (7.S) 
/t=l 

It is necessary to show that there exists the following sequence of  limits in 
each perturbat ion order 

S L= lim S 5'L (7.6) 
6-+0 

S = lim S L (7.7) 
L--+o:, 

Further we have to prove that the S-matrix (7.7) is unitary in perturbat ion 
theory, i.e. 

SS += 1 (7.8) 

This proof  is given in Alebastrov & Efimov (1972, 1973). It is completely 
correct in the case under consideration. 
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